在机械诊断技术的研究与应用中,面对一个诊断对象首先应该考虑的问题是如何获得故障信息。实际诊断工作中,通常无法对所关心的部位直接进行观察和测量,而只能在条件允许的其它部位上拾取某些与故障相关的间接信号。这些信号往往是故障激励和其它激励的混合响应,其中除了与故障相关的成分外其余均被视为噪声。由于受到传递过程和噪声的影响,一般情况下对信号进行直接观察很难得到全面的故障特征,而且,通常的信号或特征并不是描述故障的直接物理量,它们与故障之间还存在着复杂的映射关系,需要借助一定的分析过程和识别方法才能得到故障的类型和程度。信息在传递与变换过程中只会减少不会增加,所以原始信号所包含的故障信息量的多少对诊断具有决定性的作用,即信号质量是整个诊断工作的基础。
实际上,从齿轮传动系统的回转信号波动中可以得到扭振形式的啮合振动信号。当载荷稳定时,从故障激励到扭振信号之间的变换与传递过程,比同样激励到箱体往复振动之间的过程要简单得多,而且,扭振信号不像往复振动信号那样容易受到其它振源产生的机械波的干扰,所以扭振信号比往复振动信号对故障更加敏感、信噪比更高,利用扭振信号更容易发现齿轮的早期故障。
这里z6尊龙凯时将“振动”一词理解为,一个物理量通过其恒定值而在其最大最小值之间往复变化。并将物体的直线振动称为往复振动,回转运动振动称为扭振。
本文在对齿轮啮合扭振进行分析的基础上提出了通过扭振信号进行齿轮诊断的方法。试验结果表明从机器系统中测取的扭振信号受到的噪声干扰小,齿轮轴系扭振系统对故障激励的衰减作用小,因而扭振信号对故障敏感。作为齿轮早期故障诊断的信息来源,扭振信号优于箱体振动信号。但是,扭振信号的测取比较麻烦,本文同时介绍了利用轴角编码器实现扭振测试的方法。目前编码器已经具备很强的恶劣环境适应能力,并且连续工作的寿命也很长,所以本文介绍的测试方法也适用于在线监测系统。
扭振信号作为齿轮系统状态监测与诊断的信息源,其优越性已显而易见,如何充分利用扭振信号从中提取更完整的故障特征仍需要进一步深入研究。
来源
万用表 //1000qsw.com/